If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+8y-34=0
a = 5; b = 8; c = -34;
Δ = b2-4ac
Δ = 82-4·5·(-34)
Δ = 744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{744}=\sqrt{4*186}=\sqrt{4}*\sqrt{186}=2\sqrt{186}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{186}}{2*5}=\frac{-8-2\sqrt{186}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{186}}{2*5}=\frac{-8+2\sqrt{186}}{10} $
| x=125+5x | | 6x•3=7x+3 | | 8f-10=54 | | 6x2+34x+54=6 | | -81=3-7(2-5x) | | 2(1-3x)+6=2 | | 125+5x=x | | 29-w=158 | | 3x+4/7x+2=5/6 | | 3(4x–1)=12x–3 | | 3.3x+0.87=1.7x+2.79 | | 37=b+19 | | –2(p–1)=–10 | | (4x-5)(3x+5)=40 | | 10y+30=70 | | 2(6-7n)=-86 | | -7=3-x | | x-5.6=17.7 | | 125+5x=250 | | 2n-10=4.4n+6 | | 6=b/8+3 | | -x+10x=-45 | | 4.75+54x=2.50 | | 12-4s=-8 | | 125+5x=90 | | .20x^2-5=0 | | 207=5(3+5x)+7x | | 4+x=-41 | | u/6+4=11 | | 16=k/4+11 | | (5x+6)/2=3-(4x+12 | | (3x)=(5x-8) |